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Abstract

Two-dimensional numerical simulations of infinite Prandtl number convection in temp-

erature-dependent viscosity fluids reflecting a range of Arrhenius rheologies applicable

to the Venusian crust demonstrate the possibility of both localized (subcritical) and

widespread (sub- or supercritical) convection for grain sizes within the expected range.

This finding is in stark contrast with previous assumptions that the extremely dry

Venusian crust does not convect. Stable localized and widespread convection are simu-

lated in regions of mild to extreme lithospheric thinning and crustal thickening. Crustal

convection may play a role in the formation of some observed surface features such as

coronae. Additionally, localized and physically constrained widespread convection may

help planetary scientists to understand the formation and longevity of localized plan-

etary features, including the crustal dichotomy and Tharsis region of Mars and the

asymmetric pattern of volcanism on Mercury, and may offer a mechanism for localized

subduction and plate tectonics on Venus or elsewhere.

1 Introduction

Localized subcritical convection, as reported by Solomatov (2012), is a new tool for plane-

tary scientists to understand enigmatic alien topography from asymmetric distributions to

localized subduction and plate tectonics. While localized structures have been observed in a

variety of other dynamical systems far from equilibrium − for example, in nonlinear optics

and magnetoconvection (Thual and Fauve, 1988; van Saarloos and Hohenberg, 1992; Dawes,

2010; Purwins et al., 2010) − localization in purely thermally-driven convection as proposed

by Solomatov (2012) was not previously observed. Applied to planetary science, the exis-

tence of stable, localized convection in temperature-dependent viscosity fluids may provide

answers to many long-standing questions regarding unusual gravity and topography data

from terrestrial bodies.

One such body with a cornucopia of puzzling features is Venus, Earth’s twin in size and
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Figure 1: The Fotla Corona, approximately 300 km in diameter. Radar image obtained
January 1991 by Magellan spacecraft.

Figure 2: The Artemis Corona, nearly 2100 km in diameter, is the largest corona on the
Venusian surface. Radar image obtained January 1991 by Magellan spacecraft.
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little else. As an example, surface features called coronae freckle its surface in a range of sizes

from 60 km in diameter to nearly 2100 km across (Figures 1 and 2). Previous studies propose

a variety of mechanisms for the formation of these features, but all are based on mantle

dynamic processes (Janes et al., 1992; Squyres et al., 1992; Stofan et al., 1992, 1997; Head

et al., 1992; Koch and Manga, 1996; Hansen, 2003; Johnson and Richards, 2003; Grindrod

and Hoogenboom, 2006; Dombard et al., 2007). In contrast, we propose localized subcritical

convection within the crust as another viable mechanism for the formation of coronae and

other topographic features. Larger features may result from similar processes on a larger

spatial scale or over a longer duration (Stofan et al., 1997), which may be accounted for by

steady state clusters of localized plumes or physically constrained widespread convection.

2 Localized Subcritical Convection

In fluid mechanics, the Rayleigh number (Ra) is the dimensionless ratio of buoyancy forces

− the forces that drive natural convection − to viscous forces − the friction-like forces that

inhibit it. The critical Rayleigh number (Racr) is the threshold above which infinitesimal

thermal perturbations induce natural thermal convection. If a finite thermal perturbation

is applied to a system, however, there is a narrow range of sub-critical Ra values for which

stable (non-decaying) convection may still occur in temperature-dependent viscosity fluids

(Stengel et al., 1982; Richter et al., 1983; White, 1988; Bottaro et al., 1992; Capone and

Gentile, 1994; Alikina and Tarunin, 2000; Solomatov and Barr, 2006, 2008). The Ra value

below which all convection eventually decays has been termed the absolute critical Rayleigh

number (Solomatov and Barr 2006, 2008) and is denoted Ra∗cr.

Though most examples that come readily to mind of thermal convection, including the

churning of Earth’s mantle, are high Ra flows, the study of low Ra (near Racr) convection

is important in planetary science for the study of smaller planetary bodies, including several

icy satellites (McKinnon, 1999; Barr and Pappalardo, 2005; Barr and McKinnon, 2007; Mitri
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and Showman, 2008) and Mercury (Redmond and King, 2007; King, 2008). Even in larger

planetary bodies where high Ra convection is or may be present, low Ra flow may describe

convection in other regions with lower Ra values. Between its high surface temperatures and

evidence for extensive volcanic degassing, the Venusian lithosphere is assumed to be very

dry, making it highly rigid and significantly lowering its Ra value (Mackwell et al., 1998),

but most models of the Venusian interior incorporate regular mantle plumes, which would

provide sufficient thermal perturbation to initiate subcritical convection ifRa∗cr < Ra < Racr.

Therefore, a model for convection in this setting must allow for a subcritical case.

Figure 3 shows the bifurcation diagrams of fluids with constant (top), temperature-

dependent (middle), and power-law (bottom) viscosities as a function of Ra. The Nusselt

number (Nu) on the vertical axis is the dimensionless ratio of convective to conductive heat

flow, with Nu = 1 corresponding to a conductive regime and higher values corresponding

to increasingly convective flow. When rocks flow - under extreme temperature and pressure

conditions either within a planetary body or simulated in a laboratory - they are shown to

behave with temperature-dependent viscosity (Karato et al., 1986; Karato and Wu, 1993),

so we are primarily interested in the second case. We note the narrow window of stable

subcritical solutions denoted by the thick solid line in 3b, between Ra∗cr and Racr. In contrast,

subcritical convection is not possible in the case of a constant viscosity fluid, and all solutions

of power-law viscosity fluids are subcritical. This may become significant in future studies

using a more complicated rheology than considered in this preliminary investigation.

Subcritical convection in temperature-dependent viscosity fluids has been predicted and

described theoretically (Segel and Stuart, 1962; Busse, 1967; Alikina and Tarunin, 2000),

observed in laboratory experiments (Stengel et al., 1982; Richter et al., 1983; White, 1988),

and studied numerically (Alikina and Tarunin, 2000; Solomatov and Barr, 2006, 2008) with

a variety of planforms. A convecting fluid’s planform shows its distribution of hot rising

regions and cold sinking regions within the fluid body. Solomatov and Barr (2006, 2008)

showed planform-dependent stability in the subcritical regime, allowing for only approximate
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Figure 3: The bifurcation diagrams for fluids with constant (top), temperature-dependent
(middle), and power-law (right) viscosities in Ra − Nu axes. Racr is the critical Rayleigh
number as predicted by linear theory. At Ra > Racr, conductive solutions are unstable to
infinitesimal thermal perturbations and reach a solution located on the thin solid curve. This
is where convection becomes widespread. At Ra∗cr < Ra < Racr, where Ra∗cr is the absolute
critical Rayleigh number, conduction is stable under infinitesimal perturbations but unstable
to finite amplitude perturbations. These are the stable subcritical solutions located on the
thick solid line. At Ra < Ra∗cr, all convective motions eventually decay. The dashed line
shows the locations of unstable steady-state subcritical solutions. (Solomatov, 2012).
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values of Ra∗cr.

Solomatov (2012) proposed a new type of planform only stable in the subcritical regime:

a single, localized plume. In contrast to the widespread convection observed in supercritical

convection, wherein any one convective cell engenders others around it with spacing on

the order of the layer thickness, Solomatov (2012) found that a single or small cluster of

convective plumes generated by a finite, localized thermal perturbation in the subcritical

regime may remain spatially localized without decaying or becoming widespread.

Applied to planetary bodies, localized subcritical convection may play a role in the origin

of asymmetric distributions, localization and longevity of volcanism, localized topographic

rises, and peculiar regional tectonics on some planetary bodies. In particular, we propose that

localized convection may exist within the Venusian crust, causing or aiding the formation

of certain features. This study focuses on the first part of this hypothesis, assessing the

feasibility of Venusian crustal convection using a two-dimensional finite element numerical

model. Unlike the simplified exponential viscosity law used by Solomatov (2012), we use

a more realistic Arrhenius viscosity function with parameters constrained by laboratory

experiments on rocks relevant to the Venusian crust.

3 Model

The finite element code CITCOM (Moresi and Solomatov, 1995) is used to simulate thermal

convection in a two-dimensional box of depth d and width w. In all cases, the upper and lower

boundaries are maintained at constant temperature, the lateral boundaries are thermally

insulated, and all boundaries are set to have free-slip conditions.

3.1 Equations of Flow

The dimensionless equations for flow on which the model operates, derived from the Navier-

Stokes equations assuming incompressible, infinite Prandtl number flow by diffusion creep
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alone and negligible heat generation within the crust compared to the heat flux from the

mantle are

∇ · u = 0 (1)

Tt + u · ∇T = ∇2T (2)

0 = −∇P +RaTn +∇ · [η(∇u + {∇u}T )] (3)

where u is the velocity vector, T is temperature, P is pressure in excess of the hydrostatic

pressure, n is a unit vector in the z-direction, and η = η(T ) is the temperature-dependent

viscosity. The equations are non-dimensionalized using the cell depth d for the length scale,

the diffusion time κ/d2 for the time scale, the thermal contrast ∆T = Tb − Ts within the

crust assuming a linear thermal gradient for the temperature scale, a reference viscosity η0

taken to be that at the bottom of the crust, and the quantity κ/(η0d
2) for the pressure scale.

For completeness, the full derivations of these equations appear in the appendix.

The Rayleigh number is

Ra ≡ ρgα∆Td3

η0κ
. (4)

where ρ is the density, g the acceleration due to gravity, α the coefficient of thermal expansion,

κ the thermal diffusivity, and η0 the reference viscosity. In this study, we take η0 to be the

viscosity at the bottom of the crust because this is where conditions are most conducive to

flow.

3.2 Viscosity

At steady state, the strain rate of rocks depends on temperature (T ), pressure (P ), grain

size (h), and shear stress (σ) according to
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ε̇ = C

(
σ

µ

)n(
l

h

)m

exp

(
− Q

∗

RT

)
(5)

(Karato and Wu, 1993) where C is the pre-exponential factor, µ is the shear modulus, n

is the stress exponent, l is the length of the Burgers vector (a description of dislocation

distortion in a crystal lattice), m is the grain size exponent, Q∗ = E∗+PV ∗ is the activation

enthalpy of the material, E∗ is the activation energy, V ∗ is the activation volume, and R is

the ideal gas constant. In this paper, we drop the PV ∗ term because it is relatively small

compared to the activation energy E∗ in the crust. The viscosity η related to the strain

rate ε̇ according to

η =
σ

3ε̇
(6)

(Ranalli, 1995). In the case of diffusion creep, which we assume predominates over dislocation

creep for small perturbations, we take n = 1 which gives the temperature-dependent but

stress-independent Arrhenius viscosity

η =
µ

3C

(
h

l

)m

exp

(
E∗

RT

)
(7)

and the reference viscosity η0 is taken to be the value when T = Tb.

In dimensionless form,

η = B0 exp

(
A

T0 + T̃

)
(8)

where

B0 = exp

(
A

T0 + 1

)
, A =

E∗

R∆T
, T0 =

Ts
∆T

and
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T̃ =
T − Ts

∆T

ranges from T̃s = 0 at the surface to T̃b = 1 at the base of the crust. A more lengthy

derivation of these values and expressions appears in the appendix.

3.3 The Perturbation

To generate spatially localized convection, the initial thermal perturbation must be localized

(Solomatov, 2012). In a terrestrial body, this may arise from a mantle plume in a deeper

layer (e.g. Courtillot et al., 2003). Following Solomatov (2012), we use a simple Gaussian

distribution, the dimensionless, two-dimensional form of which is

T (x, z) = Tcond(z) + δT (x, z) (9)

where Tcond(z) = z is the conductive temperature profile in dimensional form and

δT (x, z) = δT0e
−r2/r20 cos(kx) sin(πz) (10)

is the perturbation function, δT0 is the perturbation amplitude, k is the wavenumber of the

perturbation, and r is the Euclidian distance between some origin point x0 and the point x.

The scaling parameter r0 controls the width of the perturbed region. The appendix includes

a short discussion on the non-dimensionalization of this equation.

For numerical reasons, small harmonic perturbations are also added through the entire

region, though their amplitude is chosen to be sufficiently small (< 1%) so that they decay

with time and are not responsible for widespread convection.

In all trial runs in this study, the perturbation was centered at the middle of a 192 ×

32 finite element grid (dimensionless height d = 1 and width w = 6). Solomatov (2012)

demonstrated that higher resolution affected results by less than ∼ 1%. In the perturbation,

we let δT0 = 0.3, r0 = 0.5, and the wavenumber k = 2π.
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4 Choice of Model Parameters

The parameter values used in this study appear in Table 1 (Karato and Wu, 1993; Solomatov

and Moresi, 1996; Rybacki and Dresen, 2000; Hirth and Kohlstedt, 2003; Korenaga and

Karato, 2008; Orth and Solomatov, 2012). As is apparent from the table, some of the values

are well-established while other remain highly uncertain. The values for C, E, and m are

derived experimentally for a given material and depend on the fugacity (water content) of

the material and the primary mechanism of flow. In this study, we take values derived

from dry samples deformed in the diffusion creep regime. The temperature contrast ∆T =

Tb − Ts between the bottom and top of the crust is derived assuming a linear thermal

gradient throughout the lithosphere, the base of which we assume has a constant temperature

around Ti = 1730 K (Orth and Solomatov, 2012); for simplicity, we assume Ti − Ts = 1000

K. The range of values for crust thickness is as proposed in Orth and Solomatov (2012),

and the values used for lithosphere thickness are consistent with present-day estimates of

thin to average lithosphere (McKenzie, 1994; Kucinskas and Turcotte, 1994; Phillips, 1994;

Smrekar, 1994; Solomatov and Moresi, 1996; Nimmo and McKenzie, 1996, 1998; Moore and

Schubert, 1997; Simmons, et al., 1997; Vezolainen, et al., 2004; Reese, et al., 2007 ; Orth and

Solomatov, 2012).

4.1 Rheological Law

The rheology of a material can be summarized by the relationship between stress (σ) and

strain rate (ε̇), as in equation (5), reproduced below.

ε̇ = C

(
σ

µ

)n(
l

h

)m

exp

(
− Q

RT

)
This relationship is known as the rheological law or flow law, and it is highly dependent on

the material and the conditions under which it is deformed. Under low stress, as we assume

in this study, diffusion creep predominates over dislocation creep so that the relationship
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Table 1: Parameter values

Parameter Notation Value
Shear modulus µ 80 GPa
Pre-exponential factor C 8.7× 1015 − 8.1× 1026 s−1

Grain size h 0.01− 1 cm
Length of Burgers vector l 0.5 nm
Grain size exponent m 2.5− 3
Activation energy E∗ 261− 375 kJ mol−1

Universal gas constant R 8.31 J mol−1 K−1

Crust thickness d 40− 80 km
Lithosphere thickness D 100− 300 km
Surface temperature Ts 733 K
Interior temperature Ti 1733 K
Crust thermal contrast ∆T 130− 800 K
Crust density ρ0 3300 kg m−3

Acceleration due to gravity g 8.9 m s−2

Thermal diffusivity κ 8.1× 10−7 m2 s−1

Coefficient of thermal expansion ᾱ 3× 10−5 K−1

between stress and strain is linear and we take n = 1. At higher stresses, dislocation creep

will induce a higher stress exponent. Rheological studies report values for Q (or E∗ in cases

like ours where the PV ∗ term is considered negligibly small in comparison), m, and C in the

diffusion and dislocation creep regimes separately.

Water can also greatly enhance a material’s susceptibility to flow, so separate rheological

laws are also developed for wet and dry samples of a material. The definitions of “wet” and

“dry” may vary slightly between studies, and it is important to check the applicability of

a given study. For example, “dry” samples in Shelton and Tullis (1981) were removed of

adsorbed water, but hydrous minerals were left to release their water during deformation,

while Karato and Wu (1993) used only water-free dry samples. Between its high surface

temperatures and evidence for extensive volcanic degassing, Venus is assumed to have an

extremely dry lithosphere (Mackwell et al., 1998), so the dry laws produced by the latter

study are more appropriate for Venus. Likewise, the “dry” condition in Hirth and Kohlstedt,

(2003) and Korenaga and Karato, (2008) referred to samples that were anhydrous to the

detection limit of Fourier transformation infrared spectroscopy (FTIR).
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These three studies - Karato and Wu (1993), Hirth and Kohlstedt (2003), and Korenaga

and Karato (2008) - used olivine as the deforming material. Olivine is assumed to be the

material governing the rheology of the Earth’s upper mantle, since it is its weakest major

phase (Korenaga and Karato, 2008). In recent studies, olivine has also been used as a proxy

for Venusian rheology (e.g. Vezolainen, et al., 2004; Reese, et al., 2007), and we follow this

lead. While little data exists to support or undermine this decision, we find it beneficial to

additionally consider a flow law for a material more similar in composition to the Venusian

surface. To be clear, rheology is not a function of composition per se, but the mineral that

will dominate a material’s rheology will be one of its major constituents. In any case, this

will give us a sense for the uncertainties associated with rheological law in our estimates of

convection in the Venusian crust.

Measurements by the Russian landers (Surkov et al., 1983, 1984, 1986) indicate that the

Venusian crust is primarily basaltic in composition, which may not be surprising given its

extensive volcanic history. Because of this, Mackwell et al. (2008) conducted rheological

studies on two carefully-chosen and extensively dried samples of basaltic diabase to specifi-

cally investigate the rheology of the Venusian lithosphere. Unfortunately, because their focus

was the deep lithosphere, they derived flow laws in the dislocation regime only. However,

Rybacki and Dresen (2000) derived both dislocation and diffusion creep flow laws for wet

and dry samples of synthetic anorthite, another basaltic diabase. We note that “dry” sam-

ples in this study contained a small but detectable amount of water by FTIR measurement

(640 ± 260 ppm H/Si or 0.004 ± 0.002 wt % H2O), but within a wide margin of error, we

assume this does not greatly affect the results.

The parameter values for the four laws used in this study are summarized in Table 2.

4.2 Lithosphere Thickness

Present estimates for Venusian lithosphere thickness are only loosely constrained. Orth

and Solomatov (2012) were able to match gravity and topography data precisely to a wide

12



Table 2: Rheological Constraints

Karato and Wu Rybacki and Dresen Hirth and Kohlstedt Korenaga and Karato
1993 2000 2003 2008

C 8.70× 1015 s−1 8.06× 1026 s−1 9.69× 1026 s−1 1.12× 1023 s−1

E∗ 300 kJ mol−1 290 kJ mol−1 375 kJ mol−1 261 kJ mol−1

m 2.5 3 3 2.98

range of average lithosphere thicknesses, but were able to constrain their results slightly by

considering melt generation rates. As an upper bound, the lithosphere cannot have grown

thicker than ∼ 800 km over its entire history in the absence of any other processes (Orth

and Solomatov, 2012). Evidence for recent volcanic eruptions (Mueller et al., 2008; Smreker

et al., 2010), indicates that the lithosphere must be thin enough, at least in some places, for

melt to form and escape. Requiring lithospheric thinning to at least 300 km to meet this

condition, Orth and Solomatov (2012) showed that any average lithosphere thickness less

than 500 km for crust thicknesses ranging 40-80 km produced at least one region satisfying

the constraint. At the other end, the lithosphere cannot be regionally thinner than 80 km,

as this would produce too much melt (Orth and Solomatov, 2012).

Turcotte (1993) proposed a Venusian history including episodic plate tectonics, with a

lithosphere cooled by thermal conduction over the last 500 million years to no more than 300

km. The model produced by Orth and Solomatov (2012) was unable to reproduce an average

lithosphere thickness less than ∼ 300 km that precisely matched gravity and topography

data without it being thinner than the crust in some places, though an earlier study using a

different model predicted an average lithosphere thickness of 250 km (Orth and Solomatov,

2009). Vezolainen, et al. (2003) introduced the additional constraint of geomorphological

estimates of the uplift time of Beta Regio, and results using a three-dimensional model

satisfying gravity, topography, olivine rheology, and uplift time data supported a lithosphere

thickness ∼ 400 km (Vezolainen et al., 2004). Reese et al., 2007 likewise found evidence for

recent lithospheric thickening to present values consistent with previous estimates ∼ 100 km

13



to 400 km (McKenzie, 1994; Kucinskas and Turcotte, 1994; Phillips, 1994; Smrekar, 1994;

Solomatov and Moresi, 1996; Nimmo and McKenzie, 1996, 1998; Moore and Schubert, 1997;

Simmons, et al., 1997).

In this study, we consider lithosphere and crust thicknesses dependently, beginning with

conditions most conducive to flow and proceeding to less extreme cases, allowing thicker

crust to correlate with lithospheric thinning.

4.3 Grain Size

Grain size varies with depth and temperature (e.g. Karato and Wu, 1993; Solomatov and

Reese, 2008), and at the range of values we are considering, grain sizes are expected to

be within the range of 0.1 mm to 1 cm. However, recognizing that the uncertainty of our

rheological and physical parameters may significantly increase the uncertainty in grain size,

we consider an extended range of conceivable grain sizes from 0.01 mm to 10 cm.

5 Results

Using the non-dimensional equations above, trials in this study are dependent only on the

parameters T0, B0, and Ra. T0 is a function only of the crust (d) and lithosphere (D)

thicknesses, and B0 is constant for fixed T0 and a particular rheological law. For a given

law and thermal contrast, Ra is adjusted in increments of 5 × 104 (for ∆T = 200 − 800

K) or 1 × 104 (for ∆T = 80 − 125 K). Results in terms of Ra can then be converted to

more intuitive results in terms of grain size h since all other values on which Ra depends are

assumed constant in a particular trial. Figures 4 and 5 show the range of Rayleigh numbers

and grain sizes respectively for which the model produced unstable (decaying), localized, and

widespread convection. Example sequences for each convective regime appear in Figures 6-9.

In Figures 4 and 5, results are grouped by the assumed rheological law and labeled ac-

cording the study from which the assumed law came. The first bar in each group corresponds

14



Figure 4: Model results in terms of the Rayleigh number Ra. The darkest regions corre-
spond to solutions where convection became widespread, so Ra > Racr. The middle regions
correspond to stable subcritical solutions, Ra∗cr < Ra < Racr, in which convection remained
a localized plume. The lightly shaded regions show where convection decayed, so Ra < Ra∗cr.
Trials are grouped by the rheology assumed with groups labeled by the study in which the
rheological law was derived. The top bar for each rheology corresponds to trials conducted
with crust thickness d = 80 km and lithosphere thickness D = 100 km. For each subsequent
bar in each group, where present, d is decreased by 10 km and D is increased by 100 km.
Trials are ceased for a particular rheology when convection can no longer be produced for
grain sizes larger than 0.1 mm (see Figure 5). In the bottommost bar of the Rybacki and
Dresen, 2000 trials, the localized subcritical window was too narrow to be detected between
the increments of Ra = 1 × 104. Dividends between the regimes are made evenly between
trial intervals of 5 × 104 for the top three bars (∆T = 200 − 800 K) and 1 × 104 for lower
bars (∆T = 80− 125 K) where present. The lower dividend is an estimate for Ra∗cr and the
upper an estimate for Racr.
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Figure 5: Model results in terms of the grain size h. The results tabulated in Figure 4 in terms
ofRa are presented here in terms of the corresponding grain size h, where all other parameters
on which Ra depends are assumed constant in any particular trial. Each bar corresponds
to the same trials as in Figure 4. As there, the darkest regions correspond to solutions in
which convection became widespread, so Ra > Racr, the middle regions correspond to stable
subcritical solutions, Ra∗cr < Ra < Racr, in which convection remained a localized plume,
and the lightly shaded regions show where convection decayed, so Ra < Ra∗cr. Trials are
grouped by the rheology assumed with groups labeled by the study in which the rheological
law was derived. The top bar for each rheology corresponds to trials conducted with crust
thickness d = 80 km and lithosphere thickness D = 100 km. For each subsequent bar in
each group, where present, d is decreased by 10 km and D is increased by 100 km. Trials
are ceased for a particular rheology when convection can no longer be produced for grain
sizes larger than 0.1 mm. In the bottommost bar of the Rybacki and Dresen, 2000 trials,
the localized subcritical window was too narrow to be detected between the increments of
Ra = 1 × 104. Dividends between convection regimes are made evenly between the grain
sizes calculated from the Ra values on either side of Racr or Racr∗.
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Figure 6: The temperature field generated by the initial perturbation in the 192× 32 finite
element grid. This is the first frame in every trial run regardless of rheological law, physical
parameters, or the Rayleigh number.

Figure 7: An example temperature field in the 192 × 32 finite element grid of our model
in which the initial thermal perturbation induces localized subcritical convection. This
plume is stable and has reached steady state. This snapshot depicts timestep 1800 of a
trial conducted with the dry diffusion rheological law reported in Hirth and Kohlstedt (2003)
assuming a crust thickness d = 80 km and lithosphere thickness D = 100 km, resulting in a
temperature contrast ∆T = 800 K in the crust, and Rayleigh number Ra = 1.5× 106.

Figure 8: An example sequence of temperature fields in the 192 × 32 finite element grid of
our model in which convection becomes widespread. These snapshots depict timesteps 400,
500, and 600 of a trial conducted with the dry diffusion rheological law reported in Korenaga
and Karato (2008) assuming a crust thickness d = 70 km and lithosphere thickness D = 200
km, resulting in a temperature contrast ∆T = 350 K in the crust, and Rayleigh number
Ra = 3.0× 105.
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Figure 9: An example sequence of temperature fields in the 192 × 32 finite element grid of
our model in which the initial thermal perturbation is unstable and decays. These snapshots
depict timesteps 100, 300, and 500 of a trial conducted with the dry diffusion rheological
law reported in Rybacki and Dresnen (2000) assuming a crust thickness d = 80 km and
lithosphere thickness D = 100 km, resulting in a temperature contrast ∆T = 800 K in the
crust, and Rayleigh number Ra = 5.5× 105.

Figure 10: An example of the dependence of localized convective cell size on the Rayleigh
number Ra. These snapshots depict the temperature fields of steady state localized subcrit-
ical plumes generated by the model assuming the rheological law reported in Karato and
Wu (1993) for Ra = 6.5× 105 (just above the absolute critical Rayleigh number Ra∗cr; top),
Ra = 8.0× 105 (middle), and Ra = 9.5× 105 (just below the critical Rayleigh number Racr;
bottom).
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to trials with d = 80 km and D = 100 km, resulting in a temperature contrast within the

crust of ∆T = 800 K. Each successive bar in a group, where present, refers to trials in which

d is decreased by 10 km and D is increased by 100 km. This results in successive thermal

contrasts, where present, of ∆T = 800 K, 350 K, 200 K, 125 K, and 80 K, as labeled. Trials

are continued until stable convection is not obtained for grain sizes within the expected range

of h = 0.1 mm - 1 cm, as depicted in Figure 5. In the bottommost bar of the Rybacki and

Dresen, 2000 trials, the localized subcritical window was too narrow to be detected between

the increments of Ra = 1× 104.

Where localized convection was found for a range of Ra under the same physical and

rheological constraints, we observed an increase in steady state cell size with increasing

Ra. Figure 10 depicts the temperature fields of steady state subcritical solutions from the

trials assuming Karato and Wu (1993) rheology for Ra = 6.5 × 105, (just above Ra∗cr),

Ra = 8.0× 105, and Ra = 9.5× 105 (just below Racr).

6 Discussion and Conclusions

Unexpectedly, our investigation of localized convection in the Venusian crust gives way to

the possibility of widespread convection under three of the four rheological laws studied.

Although the crust would only support stable convection under the Karato and Wu (1993)

rheological law in the most generous circumstances, for a thin lithosphere 100 km thick and

a crust thickened to 80 km, corresponding to a temperature contrast ∆T = 800 K, the

other three laws produce widespread convection for nearly the full range of expected grain

sizes. Both the Rybacki and Dresen (2000) law for anorthite and the Korenaga and Karato

(2008) law for olivine show widespread convection for expected grain sizes with temperature

contrast only ∆T = 350 K, corresponding to lithosphere thickness D = 200 km and crust

thickness d = 70 km. These values correspond what several models predict under many of

the largest topographical features (Anderson and Smrekar, 2006; Orth and Solomatov, 2012).
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The Rybacki and Dresen (2000) law even supports subcritical convection for expected grain

sizes with thermal contrast as low as ∆T = 125 K, corresponding to lithosphere thickness

D = 400 km and crust thickness d = 50 km. Many studies support both of these values as

close to the global average (McKenzie, 1994; Kucinskas and Turcotte, 1994; Phillips, 1994;

Smrekar, 1994; Solomatov and Moresi, 1996; Nimmo and McKenzie, 1996, 1998; Moore and

Schubert, 1997; Simmons, et al., 1997; Vezolainen, et al., 2004; Reese, et al., 2007). In other

words, both localized and widespread convection may be very real phenomena within the

Venusian crust.

It should be emphasized that all of the rheological laws here considered are relatively

simple and our calculations include wide margins for error. As noted before, the Rybecki and

Dresen (2000) law was derived from samples with slightly greater water content than those in

the other studies and perhaps more than is present in the Venusian crust. The composition of

the Venusian crust remains unknown, and geoid and topography data support a wide range

of crust and lithosphere thicknesses (Orth and Solomatov, 2012). Results may also be skewed

by projection into two dimensions, and a three-dimensional model may show different results

(e.g. Vezolainen et al., 2004). Partial melt and compositional buoyancy would also affect the

system dynamics and would need to be investigated. Finally, our calculations assume flow

by diffusion creep only, but in the case of widespread convection this would almost certainly

be invalid. Future studies should consider how the flow laws would change after the onset of

convection in this regime.

Nonetheless, these results suggesting stable localized and widespread convection within

the Venusian “stagnant lid” (Solomatov and Moresi, 1996) raise questions for future study.

Not only may localized convection be responsible for a variety of surface features, including

coronae and localized topographic rises, widespread convection may also play a significant

role. In fact, given the narrow range of physical parameters in which subcritical convection

occurs, widespread convection seems more likely to occur in the Venusian crust than sub-

critical convection. Physical requirements such as an above-average lithosphere thickness

20



may constrain widespread convection to behave much like a cluster of localized plumes, or

it may pervade under wide regions with above average thermal contrasts. Stable localized

convection may engender widespread convection if crust thickens or lithosphere thins over

time. Widespread convection may be responsible for larger topographic features while single

localized plumes may result in smaller surface expressions such as small- to medium-sized

coronae (Stofan et al., 1997). An investigation of the topography produced by these phe-

nomena assuming brittle deformation of the crust may give clues to the formation of these

and other surface features. The application of these models to other planets − including the

Earth − may provide valuable insight into the history and dynamics of these bodies, as well.

Furthermore, it is likely that convective cells of different magnitudes produce distinguish-

able topography. Since localized convective cell size depends on Ra (see Figure 10), better

understanding the relationship between convective cell size and the resulting topography

compared with observational data may offer new insight into the rheological properties and

shallow internal structure of Venus and other terrestrial bodies.

In conclusion, it is important for future studies to consider the effects that localized or

widespread convection may have on a variety of terrestrial bodies − even Earth. Noting the

dependence of the convective cell widths on physical and rheological parameters, observations

of convection-generated topography may provide a new tool for studying their shallow inter-

nal structure if convective cell width has an effect on observable topography. Additionally,

these processes could play a major role in the origin of many unsolved problems in planetary

science (see Solomatov, 2012). These include asymmetric distributions, as of volcanism on

Mercury (Roberts and Barnouin, 2012); localization and longevity of volcanism on Venus or

the early dynamo of the Moon (Stegman et al., 2003); localized topographic rises, such as the

Atla and Beta Regio of Venus (Vezolianen et al., 2004) or the crustal dichotomy and Tharsis

on Mars (Harder and Christensen, 1996; Zhong and Zuber, 2001; Reese et al., 2011; Wenzel

et al., 2004; Ke and Solomatov, 2006; Reese et al., 2007; Zhong, 2008); and peculiar regional

tectonics on Venus or other planetary bodies. Considering the problem of subduction ini-
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tiation and the onset of plate tectonics (Fowler, 1993; Trompert and Hansen, 1998; Moresi

and Solomatov, 1998; Bercovici, 2003; Valencia et al., 2007; O’Neill et al., 2007; Korenaga,

2010; van Heck and Tackley, 2011), localized or physically constrained widespread convection

within the crust may offer a mechanism for localized subduction and plate tectonics, which

was proposed on Venus nearly two decades ago (Sandwell and Schubert, 1995). We hope all

these avenues are pursued in future work.

22



A Appendix: Derivations

The following derivations are included for completeness and a fuller understanding of the

origin of the equations on which the model used in this study was based.

A.1 Navier-Stokes Equations

The Navier-Stokes equations provide the basis for everything in fluid mechanics. They

express the fundamental concepts of the conservation of mass, energy, and momentum, and

together can describe the precise movement of any fluid with known properties obeying

Newtonian mechanics. However, exact solutions can only be found for rare cases that do not

occur in rock mechanics. Fortunately, given such an application as rock mechanics, many

simplifications may be made without compromising accuracy, since some terms are so small

compared to others that they may be neglected for the given type of flow. In this section,

we derive the equations that govern the flow of planetary interiors.

We also non-dimensionalize the equations. Non-dimensionalization is an important

mathematical tool that allows us to analyze systems independent of scale. Equations are

non-dimensionalized by relating every parameter to characteristics of the system. In other

words, only relative magnitudes matter, and systems with the same relations produce iden-

tical behavior, regardless of the actual sizes of either system. Hence, a numerical box of

192× 32 finite elements can well approximate a portion of the Venusian crust 80 km thick.

The three Navier-Stokes equations, in their raw form, are the following:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (A.1)

ρT
Ds

Dt
= τij

∂ui
∂xi

+
∂qi
∂xi

+ ρH (A.2)

ρ
Dui
Dt

= −∂P
∂xi

+
∂τij
∂xj

+ ρgi (A.3)

where ρ is density, u is velocity and each xi is an orthogonal Cartesian spatial direction, T
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is temperature, s is entropy, τij is the stress tensor, q is the heat flux vector, H is the rate

of internal heat generation per unit mass, P is pressure, g is gravity, and the operator

D

Dt
=

∂

∂t
+ ui

∂

∂xi
(A.4)

is the total derivative. Equation (A.1) is the equation for conservation of mass, (A.2) con-

servation of energy, and (A.3) conservation of momentum.

A.1.1 Conservation of Mass

To simplify equation (A.1), let us first expand the second term,

δ(ρui)

δxi
= ρ

∂ui
∂xi

+ ui
∂ρ

∂xi
. (A.5)

We now employ the Boussinesq approximation, which is standard procedure in rock

mechanics. First, we assume that our fluid (the Venusian crust) behaves as an incompressible

fluid, so density is spatially constant (∂ρ/∂xi = 0). Additionally, we assume that the relative

change in density over time as warmed material rises and cooled material sinks is also small

enough to be disregarded (∂ρ/∂t = 0). Thus, we neglect density variation entirely, except

as it relates to the buoyancy force in the conservation of momentum equation. Dividing by

density, this leaves us with only

∂ui
∂xi

= 0. (A.6)

To non-dimensionalize this equation, we introduce the cell depth d as a characteristic

length and the diffusion time d2/κ as a characteristic time, where κ is the thermal diffusivity.

Together, they produce a characteristic viscosity u0 = κ/d. Returning to equation (A.6) we

derive:

24



∂ui
∂xi

=
∂ui · u0

u0

∂xi · dd

=
∂ ui

u0
· u0

∂ xi

d
· d

=
(u0
d

) ∂ũi
∂x̃i

= 0

(A.7)

where the ∼ is introduced to denote dimensionless parameters, though we will drop it for

neatness where there is no ambiguity. After dividing by the constants, we see that the non-

dimensional form of equation (A.6) looks the same as the dimensional form, except that the

parameters are dimensionless.

In equations 1 - 3 in the main body of the text, a compact notation is introduced using

the gradient operator,

∇ =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
(A.8)

in which the last line of equation A.7 becomes

∇ · u = 0

where u is the velocity vector.

A.1.2 Conservation of Energy

Turning our attention to the conservation of energy, equation (A.2), we have

ρT
Ds

Dt
= τij

∂ui
∂xi

+
∂qi
∂xi

+ ρH

(restated from above). To simplify, we first assume that the heat generated within the

crust ρH is small compared to the other terms and neglect it. This assumption is justified

since most of the decaying radioactive isotopes that generate heat are heavier materials

concentrated in the core and mantle of the planet.
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Next we introduce another standard approximation in rock mechanics: that of the ef-

fectively infinite Prandtl number Pr or low Reynolds number Red, which just means that

flow occurs very slowly (we will consider these a little more closely in manipulating the con-

servation of momentum equation next). Through dimensional manipulation similar to the

non-dimensionalization procedure above, it can be shown that the first term on the right

side of equation (A.2) scales with Red or inversely with Pr, and so is small enough compared

to the other terms to be neglected.

In fluid mechanics, low Reynolds number flow is often called “creeping flow,” and in rock

mechanics flow is generally described as a combination of diffusion creep and dislocation

creep. At the onset of convection in rock materials, as in the case of subcritical convection

following a thermal perturbation, flow occurs predominantly if not only by diffusion creep.

Diffusion creep continues to dominate in conditions of relatively low stress, small grain size,

low temperature, and high pressure (Karato and Wu, 1993). Since we can expect that

Venusian crustal material is subject to most of these conditions, we make the simplifying

assumption that flow occurs only by diffusion creep within the Venusian crust. It follows from

this that the deformed minerals assume an isotropic distribution (Karato and Wu, 1993),

allowing us to use Fourier’s law of heat conduction to make the following substitution:

qi = −k ∂T
∂xi

(A.9)

where k is thermal conductivity. Assuming a roughly homogeneous crust, we take k to be

constant and pull it outside the outer derivative in equation A.2.

Finally, we employ thermodynamic identities to replace the term on the left side of

equation (A.2) with

ρT
Ds

Dt
= ρcp

DT

Dt
− αT Dρ

Dt
(A.10)

where cp is specific heat capacity and α is the coefficient of thermal expansion or thermal
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expansivity (Schubert et al., 2001). By the Boussinesq approximation, we can again ignore

the variation in density and so drop the second term, so we have

ρcp
DT

Dt
= k

∂2T

∂x2i
(A.11)

and dividing both sides by k, we get

1

κ

DT

Dt
=
∂2T

∂x2i
(A.12)

where κ ≡ k/(ρcp) is the thermal diffusivity as previously introduced. This is the simplified

form of the equation for conservation of energy.

We can non-dimensionalize this equation following the same procedure as used above

with the equation for conservation of mass. We introduce the parameters Ts, the constant

temperature at the top of our fluid layer (the Venusian surface), and Tb, the constant tem-

perature at the bottom of the fluid layer (the base of the Venusian crust), and define the

thermal contrast ∆T = Tb − Ts. We will use ∆T for the temperature scale, and specific

temperature values will be computed non-dimensionally as

T̃ =
T − Ts
Tb − Ts

(A.13)

so that we get the boundary conditions T̃s = 0 at the surface and T̃b = 1 at the base of the

fluid layer.

Expanding the total derivative, we derive:

1

κ
·
(

∆Tκ

d2

)
·

[
∂T̃

∂t̃
+ ũi ·

∂T̃

∂x̃i

]
=

(
∆T

d2

)
· ∂

2T̃

∂x̃i
2 (A.14)

from which we immediately see that the constants cancel and we are left with a simplified,

dimensionless form of the equation for the conservation of energy:
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∂T

∂t
+ ui ·

∂T

∂xi
=
∂2T

∂x2i
. (A.15)

where we have dropped the ∼ for neatness.

In the compact form, this is denoted

Tt + u · ∇T = ∇2T

as in equation 2.

A.1.3 Conservation of Momentum

Finally addressing conservation of momentum, equation (A.3), we have

ρ
Dui
Dt

= −∂P
∂xi

+
∂τij
∂xj

+ ρgi

(restated from above). The left side of the equation gives the inertia per volume in the fluid.

Because of the creeping or low Reynolds number flow, this term is very small compared to

the others. To see this, we can follow the same procedure as above to non-dimensionalize

the term and compare it to the dimensionless form of the second term on the right. Using

a reference density ρ0 and the same reference velocity u0 = κ/d and length scale d as above,

we get

ρ

(
Dui
Dt

)
= ρ

(
∂ui
∂t

+ ui
∂ui
∂xi

)
=

(
ρ0u

2
0

d

)
· ρ̃
(
∂ũi

∂t̃
+ ũi

∂ũi
∂x̃i

)
.

(A.16)

For comparison, we now consider the second term on the right side. We may expand the

stress tensor to get

∂τij
∂xj

=
∂

∂xi

[
η

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)]
(A.17)
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where η is viscosity and δij is the Kronecker delta. Introducing the characteristic reference

viscosity η0, we pull out the constants η0u0/d
2 from the dimensionless form of the second

term on the right side of equation A.3. Then, ignoring the other terms, we divide both sides

of equation A.3 by this factor to derive as a constant on the left side of the equation

ρ0u
2
0

d
· d2

η0u0
=
ρ0u0d

η0

≡ Red

(A.18)

where Red is the Reynolds number for a system with characteristic length d. Hence we see

that, in our case of creeping flow (Red � 1), this term is relatively small. Furthermore, if

we substitute u0 = κ/d, equation (A.18) becomes

ρ0u0d

η0
=
ρ0κ

η0

=
κ

ν

≡ Pr−1

(A.19)

where ν ≡ η0/ρ is the kinematic viscosity. This illustrates why the low Reynolds number

approximation is often called the “infinite” (meaning sufficiently large) Prandtl number

approximation. (For a rigorous proof that the limit of the Boussinesq approximation for this

system is an infinite Pr, see Wang (2004).) In either case, we have established that the left

side of the equation is sufficiently small compared to the other terms that we can assume it

equals zero.

Returning to the right side of the equation, we can drop the last term of the stress tensor

because ∂uk/∂xk = 0 for incompressible flow (Schubert et al, 2001). Lastly, we note that,

assuming we choose our coordinate system wisely, gravity need only act in one direction, so

the last term is simply ρg in that direction and zero elsewhere. Thus, we are left with the

simplified form of equation (A.3):
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0 = −∂P
∂xi

+
∂

∂xj

[
η

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρgi. (A.20)

To non-dimensionalize this equation, we first define pressure as the sum of a reference

value P0 and the deviation from that pressure, P = P0 + P ′. Then

∂P

∂xi
=

∂

∂xi
(P0 + P ′)

=
∂P0

∂xi
+
∂P ′

∂xi

(A.21)

and ∂P0/∂xi = ρ0g is the hydrostatic pressure, which is zero in all but the vertical direction.

Likewise defining density as the sum of a reference density ρ0 and the deviation from that

density, ρ = ρ0 + ρ′, we find that ρ0g cancels with the hydrostatic pressure derived above,

leaving ρ′g, which can be manipulated using thermodynamic identities:

ρ′g =

(
∂ρ

∂P

)
T

P ′ −
(
∂ρ

∂T

)
P

T ′

= ρ0χTP
′ − ρ0αT ′

(A.22)

where χT and α are reference values for isothermal compressibility and thermal expansivity,

respectively (Schubert et al., 2001). Since we are assuming an incompressible fluid, the first

of these terms is dropped. T ′ denotes the temperature change in the direction normal to the

fluid surface.

To non-dimensionalize the middle term on the right side of equation (A.20), we introduce

the quantity κ/(η0d
2) as a characteristic pressure. Combining all the constants, we derive

the non-dimensional expression

0 = −∂P̃
′

∂x̃i
− ρ0gα∆Td3

η0κ
T̃ ′ +

∂

∂x̃i

[
η̃

(
∂ũ

∂x̃i
+

{
∂ũ

∂x̃i

}T
)]

. (A.23)

Then, as introduced in equation 4 in the body of this article, the collection of constants in

the second term on the right side of this expression define the Rayleigh number, Ra:

30



Ra ≡ ρ0gα∆Td3

η0κ
(A.24)

which, as defined in Section 2, is the dimensionless ratio of buoyant to viscous forces within

the system.

Dropping the ∼ for neatness, equation (A.23) becomes the simplified, dimensionless

equation for conservation of momentum

0 = −∂P
∂xi
−RaT ∂n

∂z
+

∂

∂xj

[
η

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ ρgz. (A.25)

In the compact form, this is written

0 = −∇P +RaTn +∇ · [η(∇u + {∇u}T )]

as in equation 3.

A.2 Arrhenius Viscosity

The Arrhenius equation for temperature-dependent viscosity η an approximate law assuming

a constant, homogeneous substance is

η = b · exp

(
E∗ + PV ∗

RT

)
(A.26)

where b is a constant, E∗ is the activation energy of the material, V ∗ is the activation volume,

P is the pressure, R is the ideal gas constant, and T is the variable temperature. In this

paper, we drop the PV ∗ term because it is relatively small compared to the activation energy

E in the crust.

The Arrhenius viscosity is commonly used in rock mechanics, but without knowing out-

right the constant b, we get a more accurate model of viscosity by non-dimensionalizing with

respect to a reference visosity, η0. To do this, we first express the temperature as a deviation
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from the surface temperature, T = Ts + T ′, and use ∆T = Tb− Ts for the temperature scale

as above, so that the exponent is re-written

E∗

RT
=

E∗

R(Ts + T ′)

=
E∗

R∆T

∆T

Ts + T ′

=
A

T0 + T̃

(A.27)

where A = E∗/(RT ) is a dimensionless constant, T0 = Ts/(Tb − Ts) is a non-dimensional

temperature reference to surface conditions, and T̃ the deviation from it. Note that T0 =

Ts/(Tb−Ts) differs from the non-dimensional surface temperature T̃s = (Ts−Ts)/(Tb−Ts) = 0.

The equivalent temperature reference for conditions at the bottom of the crust is

Tb
Tb − Ts

=
Tb + Ts − Ts
Tb − Ts

=
Ts

Tb − Ts
+
Tb − Ts
Tb − Ts

= T0 + 1.

(A.28)

Thus, T̃ ranges from T̃s = 0 to T̃b = 1.

The reference viscosity η0 is taken to be the viscosity at the bottom of the crust, so we

will substitute T̃ = 1 here. We choose to use the conditions at the base of the crust for

reference because this is where the temperature-dependent viscosity will be lowest, and the

likelihood of convection highest. This gives

η̃ =
η

η0

=
b · exp

(
A

T0+T̃

)
b · exp

(
A

T0+1

) (A.29)

from which we immediately see that the coefficients b cancel. Additionally, since the denom-

inator is constant, we can express it simply as B−10 , leaving us with the non-dimensional

Arrhenius viscosity:
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η = B0 exp

(
A

T0 + T̃

)
. (A.30)

We note that this dimensionless expression for viscosity matches in form the dimensional

version above, as desired.

This gives a dimensionless expression for the viscosity dependent only on the physical

conditions summarized in ∆T and the rheological parameter E∗. However, because the

Rayleigh number depends on the reference viscosity η0, an expression for the constant b is

still required. To derive b, we first return to the relationship between viscosity and the ratio

of stress to strain rate,

η =
σ

3ε̇
(A.31)

(Ranalli, 1995). We now use the equation for strain rate as a function of temperature (T ),

pressure (P ), grain size (h), and shear stress (σ) introduced in equation 5 above:

ε̇ = C

(
σ

µ

)n(
l

h

)m

exp

(
−E

∗ + PV ∗

RT

)
(Karato and Wu, 1993) where C is the pre-exponential factor, µ is the shear modulus, n is

the stress exponent, l is the length of the Burgers vector (a description of dislocation in the

crystal lattice), and m is the grain size exponent.

As in the Arrhenius viscosity, we drop the PV ∗ term, since it is relatively small compared

to E∗ in the crust, and non-dimensionalize the exponent as above. At the low stresses

expected in the crust, we may assume n = 1, which corresponds to our assumption that flow

occurs by diffusion creep only. Then, equation (A.31) above neatly returns an expression in

the same form as equation(A.30), and we get that

b =
µ

3C

(
h

l

)m

. (A.32)
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A.3 The Perturbation

The last equations needed for our model is a set of initial conditions that include a thermal

perturbation. This will initiate convection which will either decay, remain localized, or

become widespread in the model simulation. In reality, this thermal anomaly would most

likely come from a mantle plume, but the source makes little difference. Following Solomatov,

2012, we use a simple 2D Gaussian distribution

T (x, z) = Tcond(z) + δT (x, z) (A.33)

where Tcond(z) = z is the conductive temperature profile in dimensional form and

δT (x, z) = δT0e
−r2 cos(kx) sin(πz) (A.34)

is the dimensional perturbation function, δT0 is the perturbation amplitude, k is the wave-

number of the perturbation, and r is the Euclidian distance between some origin point x0

and the point x.

This equation is non-dimensionalized in the same way as the equations above. k and x

are both scaled by the cell depth d, which cancels in the cosine term. The extra constant

from the sine term and the ∆T s from scaling the temperature addends are assumed into the

perturbation amplitude. The parameter r is scaled by a reference value r0 which controls

the width of the perturbed region and remains a variable in the equation. This leaves a

dimensionless perturbation:

T̃ (x, y, z) = z̃ + δT̃0e
−r2/r20 cos(k̃x̃) sin(πz̃) (A.35)

where the ∼ are dropped equations 9-10 in the body of the text for simplicity.
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A.4 The Critical Rayleigh Number

A numerical model programmed with the above equations will simulate convection that will

either decay, remain localized, or become widespread. To get a sense of what Ra values

will result in which condition before running any simulations, though, which may drastically

shorten data collection time, we can independently estimate Racr using the following model

developed by Solomatov, 1995:

Racr = Racr,n

[
eθ

4(n+ 1)

]2(n+1)/n

(A.36)

where Racr,n = Racr,1
1/n · Racr,inf (n−1)/n, Racr,1 = 1568, and Racr,inf = 20. Fortunately, we

may continue to assume n = 1, which greatly simplifies the above expression to:

Racr =

(
1586

4096
e4
)
· θ4. (A.37)

In this expression, θ is derived from an approximation to the Arrhenius viscosity. In place

of equation (A.26) above, the exponent is approximated and simplified as follows:

E∗

RT
=

E∗

R(Tb + T ′)

=
E∗

RTb(1 + T ′

Tb
)

=
E∗

RTb

(
1− T ′

Tb

)
=

E∗

RTb
− E∗T ′

RT 2
b

(A.38)

where the third equality follows approximately from Taylor expansion. Now, since we are

examining an exponent and the first term after the last equality is a constant, this term can

be removed from the exponent, and the remainder written as a function of non-dimensional

temperature:
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E∗

RT
∼ −E

∗T ′

RT 2
b

= −
(
E∗∆T

RT 2
b

)
T ′

∆T

= −θT̃ ′

(A.39)

and so

θ =
E∗∆T

RT 2
b

. (A.40)

Here, temperature is expressed as a deviation from the temperature at the bottom of the

crust Tb instead of a deviation from the surface temperature Ts to account for the reference

viscosity being that at the bottom of the crust. Before, we were able to use Ts instead

(which is more intuitive because it is both the lowest temperature and non-variant, unlike

Tb) because the reference depth was determined by the parameter T̃ , which varied from 0 at

the surface to 1 at the bottom of the crust. However, in this simplified model for viscosity,

the parameter θ controls all aspects of the model, including the reference depth, so it is

important that Tb is used here.

This gives an equation for an estimate Racr

Racr =

(
1586

4096
e4
)
·
(
E∗∆T

RT 2
b

)4

. (A.41)
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